條件獨立下的處理效應

作者:Josef Perktold

此筆記本說明 statsmodels 中新的處理效應功能的基本用法。

主要的類別是 statsmodels.treatment.treatment_effects.TreatmentEffect

此類別使用 5 種不同的方法 ipw、ra、aipw、aipw-wls、ipw-ra 估計處理效應和潛在結果。後三種方法需要處理或選擇模型和結果模型。標準誤和推論基於選擇或處理模型、結果模型和效應函數的聯合 GMM 表示。推論方法遵循 Stata,但 Stata 支持更廣泛的模型。估計和推論在條件獨立或可忽略性的假設下有效。

結果模型目前僅限於基於 OLS 的線性模型。處理目前僅限於二元處理,可以是 Logit 或 Probit。

此範例遵循 Cattaneo。

[1]:
import os
import numpy as np
from numpy.testing import assert_allclose
import pandas as pd

from statsmodels.regression.linear_model import OLS
from statsmodels.discrete.discrete_model import Probit
from statsmodels.treatment.treatment_effects import (
    TreatmentEffect
    )

from statsmodels.treatment.tests.results import results_teffects as res_st

# Load data for example
cur_dir = os.path.abspath(os.path.dirname(res_st.__file__))
file_name = 'cataneo2.csv'
file_path = os.path.join(cur_dir, file_name)
dta_cat = pd.read_csv(file_path)

methods = ['ra', 'ipw', 'aipw', 'aipw_wls', 'ipw_ra']
methods_st = [
    ("ra", res_st.results_ra),
    ("ipw", res_st.results_ipw),
    ("aipw", res_st.results_aipw),
    ("aipw_wls", res_st.results_aipw_wls),
    ("ipw_ra", res_st.results_ipwra),
    ]

# allow wider display of data frames
pd.set_option('display.width', 500)
[2]:
dta_cat.head()
[2]:
bweight mmarried mhisp fhisp foreign alcohol deadkids mage medu fage ... prenatal birthmonth lbweight fbaby prenatal1 mbsmoke_ mmarried_ fbaby_ prenatal1_ mage2
0 3459 married 0 0 0 0 0 24 14 28 ... 1 12 0 0 1 0 1 576.0
1 3260 notmarried 0 0 1 0 0 20 10 0 ... 1 7 0 0 0 0 1 400.0
2 3572 married 0 0 1 0 0 22 9 30 ... 1 3 0 0 1 0 1 484.0
3 2948 married 0 0 0 0 0 26 12 30 ... 1 1 0 0 1 0 1 676.0
4 2410 married 0 0 0 0 0 20 12 21 ... 1 3 1 0 1 1 1 400.0

5 列 × 28 欄

建立 TreatmentEffect 實例並計算 ipw

TreatmentEffect 類別需要 - 結果模型的 OLS 模型實例、- 選擇模型的結果實例和 - 處理指標變數。

在以下範例中,我們使用 Probit 作為選擇模型。也支援使用 Logit。

[3]:
# treatment selection model
formula = 'mbsmoke_ ~ mmarried_ + mage + mage2 + fbaby_ + medu'
res_probit = Probit.from_formula(formula, dta_cat).fit()

# outcome model
formula_outcome = 'bweight ~ prenatal1_ + mmarried_ + mage + fbaby_'
mod = OLS.from_formula(formula_outcome, dta_cat)

# treatment indicator variable
tind = np.asarray(dta_cat['mbsmoke_'])

teff = TreatmentEffect(mod, tind, results_select=res_probit)
Optimization terminated successfully.
         Current function value: 0.439575
         Iterations 6

建立 TreatmentEffect 實例後,我們可以呼叫 5 種方法中的任何一種來計算潛在結果 POM0、POM1 和平均處理效應 ATE。POM0 是未處理組的潛在結果,POM1 是處理組的潛在結果,處理效應是 POM1 - POM0。

例如,teff.ipw() 使用逆機率加權計算 POM 和 ATE。處理機率也通常稱為傾向分數。估計的 summary 包括 POM 和 ATE 的標準誤和信賴區間。

標準誤和其他推論統計基於選擇和結果模型的廣義動差法 (GMM) 表示以及結果統計的動差條件。方法 ipw 使用選擇模型,但不使用結果模型。方法 ra 使用結果模型,但不使用選擇模型。雙重穩健估計器 aipwaipw-wlsipw-ra 包括選擇和結果模型,其中至少需要正確指定這兩個模型中的一個,才能獲得處理效應的一致估計值。目標變數 POM0、POM1 和 ATE 的動差條件基於 POM0 和 ATE。其餘的 POM1 計算為 POM0 和 ATE 的線性組合。

內部 gmm 結果作為 results_gmm 附加到處理結果中。

依預設,處理效應方法會計算平均處理效應,其中平均值取自樣本觀察值。選項 effect_group 可用於計算受處理者的平均處理效應 ATT,方法是使用 effect_group=1,或使用 effect_group=0 計算未受處理者的平均處理效應。

[4]:
res = teff.ipw()
res
[4]:
<class 'statsmodels.treatment.treatment_effects.TreatmentEffectResults'>
                             Test for Constraints
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ATE         -230.6891     25.817     -8.936      0.000    -281.289    -180.089
POM0        3403.4632      9.571    355.586      0.000    3384.704    3422.223
POM1        3172.7741     24.001    132.193      0.000    3125.733    3219.815
==============================================================================
[5]:
res.summary_frame()
[5]:
coef std err z P>|z| Conf. Int. Low Conf. Int. Upp.
ATE -230.689070 25.816758 -8.935633 4.048542e-19 -281.288985 -180.089154
POM0 3403.463163 9.571412 355.586324 0.000000e+00 3384.703540 3422.222785
POM1 3172.774093 24.001059 132.193085 0.000000e+00 3125.732881 3219.815305
[6]:
print(res.results_gmm.summary())
                               _IPWGMM Results
==============================================================================
Dep. Variable:                      y   Hansen J:                    3.988e-09
Model:                        _IPWGMM   Prob (Hansen J):                   nan
Method:                           GMM
Date:                Thu, 03 Oct 2024
Time:                        16:04:28
No. Observations:                4642
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
p 0         -230.6891     25.817     -8.936      0.000    -281.289    -180.089
p 1         3403.4632      9.571    355.586      0.000    3384.704    3422.223
p 2           -1.5583      0.461     -3.380      0.001      -2.462      -0.655
p 3           -0.6485      0.055    -11.711      0.000      -0.757      -0.540
p 4            0.1744      0.036      4.836      0.000       0.104       0.245
p 5           -0.0033      0.001     -4.921      0.000      -0.005      -0.002
p 6           -0.2176      0.050     -4.390      0.000      -0.315      -0.120
p 7           -0.0864      0.010     -8.630      0.000      -0.106      -0.067
==============================================================================

受處理者的平均處理效應

請參閱下文

[7]:
teff.ipw(effect_group=1)
[7]:
<class 'statsmodels.treatment.treatment_effects.TreatmentEffectResults'>
                             Test for Constraints
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ATE         -225.1796     23.658     -9.518      0.000    -271.549    -178.811
POM0        3362.8393     14.198    236.855      0.000    3335.012    3390.667
POM1        3137.6597     19.071    164.526      0.000    3100.281    3175.038
==============================================================================

未受處理者的平均處理效應

[8]:
teff.ipw(effect_group=0)
[8]:
<class 'statsmodels.treatment.treatment_effects.TreatmentEffectResults'>
                             Test for Constraints
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ATE         -231.8782     27.699     -8.371      0.000    -286.168    -177.588
POM0        3412.9116      9.283    367.634      0.000    3394.716    3431.107
POM1        3181.0334     26.120    121.786      0.000    3129.840    3232.227
==============================================================================

其他計算 ATE 的方法的工作方式與 ipw 相同或相似,例如迴歸調整 ra 和雙重穩健 ipw_ra

[9]:
res_ra = teff.ra()
res_ra
[9]:
<class 'statsmodels.treatment.treatment_effects.TreatmentEffectResults'>
                             Test for Constraints
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ATE         -239.6392     23.824    -10.059      0.000    -286.333    -192.945
POM0        3403.2423      9.525    357.288      0.000    3384.573    3421.911
POM1        3163.6031     21.864    144.698      0.000    3120.751    3206.455
==============================================================================
[10]:
res_ra.summary_frame()
[10]:
coef std err z P>|z| Conf. Int. Low Conf. Int. Upp.
ATE -239.639211 23.824021 -10.058722 8.408247e-24 -286.333435 -192.944988
POM0 3403.242272 9.525207 357.288006 0.000000e+00 3384.573209 3421.911335
POM1 3163.603060 21.863509 144.697867 0.000000e+00 3120.751371 3206.454750
[11]:
ra2 = teff.ipw_ra(effect_group=1, return_results=True)
ra2.summary_frame()
[11]:
coef std err z P>|z| Conf. Int. Low Conf. Int. Upp.
ATE -223.545262 23.794008 -9.395023 5.720507e-21 -270.180660 -176.909864
POM0 3361.204984 14.465009 232.367989 0.000000e+00 3332.854088 3389.555880
POM1 3137.659722 19.070923 164.525844 0.000000e+00 3100.281400 3175.038045

TreatmentEffect 中的所有方法

以下程式碼會計算並列印所有方法的 ATE 和 POM。(我們將對 TreatmentEffect 的呼叫包含在內,作為提醒。)

[12]:
teff = TreatmentEffect(mod, tind, results_select=res_probit)

for m in methods:
    res = getattr(teff, m)()
    print("\n", m)
    print(res.summary_frame())
 ra
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -239.639211  23.824021  -10.058722  8.408247e-24     -286.333435      -192.944988
POM0  3403.242272   9.525207  357.288006  0.000000e+00     3384.573209      3421.911335
POM1  3163.603060  21.863509  144.697867  0.000000e+00     3120.751371      3206.454750

 ipw
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -230.689070  25.816758   -8.935633  4.048542e-19     -281.288985      -180.089154
POM0  3403.463163   9.571412  355.586324  0.000000e+00     3384.703540      3422.222785
POM1  3172.774093  24.001059  132.193085  0.000000e+00     3125.732881      3219.815305

 aipw
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -230.989648  26.214445   -8.811541  1.234375e-18     -282.369017      -179.610280
POM0  3403.355674   9.568514  355.682783  0.000000e+00     3384.601731      3422.109616
POM1  3172.366025  24.427402  129.869153  0.000000e+00     3124.489197      3220.242854

 aipw_wls
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -227.195618  27.372036   -8.300282  1.038645e-16     -280.843822      -173.547414
POM0  3403.250651   9.596571  354.631943  0.000000e+00     3384.441717      3422.059585
POM1  3176.055033  25.654642  123.800406  0.000000e+00     3125.772859      3226.337206

 ipw_ra
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -229.967078  26.629411   -8.635830  5.830196e-18     -282.159765      -177.774391
POM0  3403.335639   9.571288  355.577620  0.000000e+00     3384.576260      3422.095018
POM1  3173.368561  24.871955  127.588224  0.000000e+00     3124.620425      3222.116697

Stata 中的結果

statsmodels 中的結果與 Stata 中的結果非常接近,因為兩個套件都使用相同的方法。

[13]:
for m, st in methods_st:
    print("\n", m)
    res = pd.DataFrame(st.table[:2, :6], index = ["ATE", "POM0"], columns=st.table_colnames[:6])
    print(res)
 ra
                b         se           z        pvalue           ll           ul
ATE   -239.639211  23.824021  -10.058722  8.408247e-24  -286.333435  -192.944988
POM0  3403.242272   9.525207  357.288005  0.000000e+00  3384.573209  3421.911335

 ipw
                b         se           z        pvalue           ll           ul
ATE   -230.688638  25.815244   -8.936140  4.030006e-19  -281.285586  -180.091690
POM0  3403.462709   9.571369  355.587873  0.000000e+00  3384.703170  3422.222247

 aipw
                b         se           z        pvalue           ll           ul
ATE   -230.989201  26.210565   -8.812828  1.220276e-18  -282.360964  -179.617438
POM0  3403.355253   9.568472  355.684297  0.000000e+00  3384.601393  3422.109114

 aipw_wls
                b         se           z        pvalue           ll           ul
ATE   -227.195618  27.347936   -8.307597  9.765984e-17  -280.796587  -173.594649
POM0  3403.250651   9.596622  354.630065  0.000000e+00  3384.441618  3422.059684

 ipw_ra
                b         se           z        pvalue           ll           ul
ATE   -229.967078  26.626676   -8.636718  5.785117e-18  -282.154403  -177.779752
POM0  3403.335639   9.571260  355.578657  0.000000e+00  3384.576315  3422.094963

沒有推論的處理效應

可以在不計算標準誤和推論統計的情況下計算 POM 和 ATE。在這種情況下,不會計算 GMM 模型。

[14]:
for m in methods:
    print("\n", m)
    res = getattr(teff, m)(return_results=False)
    print(res)
 ra
(np.float64(-239.6392114643395), np.float64(3403.242271935487), np.float64(3163.6030604711477))

 ipw
(np.float64(-230.6886377952617), np.float64(3403.4627086845567), np.float64(3172.7740708892948))

 aipw
(np.float64(-230.98920111257803), np.float64(3403.3552531738355), np.float64(3172.3660520612575))

 aipw_wls
(np.float64(-227.19561818674902), np.float64(3403.2506509757864), np.float64(3176.0550327890373))

 ipw_ra
(np.float64(-229.96707793513224), np.float64(3403.3356393074205), np.float64(3173.3685613722882))

受處理者的處理效應

子群組的處理效應不適用於 aipwaipw-wls

effect_group 選擇要計算處理效應和潛在結果的群組。選項包括「all」(樣本平均處理效應)、1 (受處理者的平均處理效應)和 0 (未受處理者的平均處理效應)。

注意:即使對於子群組的處理效應,pandas 資料框架中的列標籤 POM 和 ATE 也相同。

[15]:
for m in methods:
    if m.startswith("aipw"):
        continue
    res = getattr(teff, m)(effect_group=1)
    print("\n", m)
    print(res.summary_frame())
 ra
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -223.301651  22.742195   -9.818826  9.342545e-23     -267.875534      -178.727767
POM0  3360.961373  12.757489  263.450069  0.000000e+00     3335.957154      3385.965592
POM1  3137.659722  19.070923  164.525844  0.000000e+00     3100.281400      3175.038045

 ipw
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -225.179608  23.658119   -9.518069  1.764269e-21     -271.548669      -178.810546
POM0  3362.839334  14.197866  236.855264  0.000000e+00     3335.012028      3390.666640
POM1  3137.659726  19.070923  164.525845  0.000000e+00     3100.281404      3175.038049

 ipw_ra
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -223.545262  23.794008   -9.395023  5.720507e-21     -270.180660      -176.909864
POM0  3361.204984  14.465009  232.367989  0.000000e+00     3332.854088      3389.555880
POM1  3137.659722  19.070923  164.525844  0.000000e+00     3100.281400      3175.038045

未受處理者的處理效應

與 ATT 類似,我們可以透過使用選項 effect_group=0 來計算未受處理者的平均處理效應。

[16]:
for m in methods:
    if m.startswith("aipw"):
        # not available
        continue
    res = getattr(teff, m)(effect_group=0)
    print("\n", m)
    print(res.summary_frame())
 ra
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -243.375488  24.902030   -9.773319  1.465697e-22     -292.182569      -194.568406
POM0  3412.911593   9.283454  367.633804  0.000000e+00     3394.716358      3431.106829
POM1  3169.536106  23.128805  137.038471  0.000000e+00     3124.204480      3214.867731

 ipw
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -231.878176  27.699436   -8.371224  5.702294e-17     -286.168073      -177.588279
POM0  3412.911593   9.283454  367.633804  0.000000e+00     3394.716357      3431.106829
POM1  3181.033418  26.119760  121.786472  0.000000e+00     3129.839629      3232.227206

 ipw_ra
             coef    std err           z         P>|z|  Conf. Int. Low  Conf. Int. Upp.
ATE   -231.125972  28.813022   -8.021580  1.043933e-15     -287.598458      -174.653487
POM0  3412.911593   9.283454  367.633804  0.000000e+00     3394.716358      3431.106829
POM1  3181.785621  27.301318  116.543297  0.000000e+00     3128.276021      3235.295221

可以使用 help 來取得 TreatmentEffect 類別及其方法的 docstring

help(teff)


上次更新:2024 年 10 月 03 日